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Abstract: The newly released KUKA LBR iiwa 14 R820 robot stands for intelligent industrial work
assistant (iiwa) and is, like its predecessor LBR IV, equipped with torque sensors in each joint, and can
be controlled through a real-time interface. Although the dynamic model of the robot is not published by
the manufacturer, its knowledge is indispensable for simulation and control based on the system model.
This paper presents the identification of the minimal set of base parameters, as well as a consistent set
of physical parameters for a rigid-link model of the KUKA LBR iiwa 14 R820 robot, including friction.
The experiments on the robot are conducted based on optimized excitation trajectories. The physical
parameters, which are required for stable dynamic simulations, are identified by solving a nonlinear
optimization problem, where constraints are included to ensure physical feasibilty. A validation and
cross-validation in simulation and experiments show a very accurate representation of the robot’s
dynamics by the resulting models. As a result, both sets of identified parameters are given.
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1. INTRODUCTION

More and more tasks in various sectors, as in medical care or
domestic and industrial applications, are assisted by or com-
pletely transferred to robotic manipulators. Robots are also
planned to be used in the future in the construction industry,
where more complex goals should be accomplished, such as
cooperative tasks. The KUKA LBR iiwa 14 R820 is especially
suited for research in robotics, as it is accessible through a
real-time interface named Fast Robot Interface, see KUKA
Robot Group (2015b). Moreover, it is mainly designed for in-
teractions with humans, and is therefore equipped with torque
sensors after the gearbox of each actuated joint, which allows
for cooperative interaction control. In order to develop model-
based controllers for a robotic manipulator, its dynamic model
is needed. Furthermore, if complex multi-robot tasks are con-
sidered, it is valuable to do dynamic simulations of the robots’
motions and interactions. In order to obtain reliable simulation
results, it is again crucial to know the robot’s model parameters.

In Bargsten et al. (2013), the identification of the dynamic
parameters of the KUKA LBR IV, the predecessor of the LBR
iiwa, is considered, and an identification procedure is outlined,
but no parameters are published. Its dynamic parameters are
published in Jubien et al. (2014b), and other approaches for the
identification of the parameters used by KUKA for the LBR IV
are proposed in Jubien et al. (2014a) and in Gaz et al. (2014).
Although the LBR iiwa and its predecessor are similar, their
dimensions are slightly different, and their parameters are not
identical. In Besset et al. (2016) , a method for static calibration
of the geometric parameters of the LBR iiwa is proposed, but
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to the best of our knowledge, no dynamic model parameters are
currently publicly available for the KUKA LBR iiwa 14 R820.

In Albu-Schiffer and Hirzinger (2001) and Ott (2008) , models
for robots with flexible links are considered, which include
joint elasticity and damping. However, as the joint stiffness
of the KUKA LBR iiwa is very high, despite its torque sen-
sors, a model of rigid links is used in this paper. Its validity
is confirmed by the high accuracy of the results. Rigid link
models can be formulated in terms of a minimal set of dy-
namic parameters, the base parameters, see Gautier and Khalil
(1990), which can be beneficial in some cases. However, for
dynamic simulations, a consistent set of the robot’s physical
parameters are required. This is the case for the open-source
robotics simulation software Gazebo, see Koenig and Howard
(2004), gazebosim.org (2015). Therefore, both the set of base
parameters and the set of consistent physical parameters of the
KUKA LBR iiwa 14 R820 robot are identified.

For the identification of base parameters, the inverse dynamics
model is used, as the dynamic parameters enter it linearly, see
Siciliano et al. (2010). In order to maximize the information
about the parameters in the robot’s motion, optimal excitation
trajectories are designed, which are tracked by the robot in ex-
periments. Based on the measured joint torques and positions,
the resulting equations, which are linear in the unknown param-
eters, are solved through a least-squares approach. To obtain
physical parameters, which are usable in dynamic simulations,
the identified parameters need to be physically consistent, as
shown in Mata et al. (2005). Therefore, constraints are included
in the identification, resulting in a nonlinear optimization prob-
lem. The resulting physical parameters are thus physically fea-
sible and consistent with the robot’s dynamics. However, they
do not necessarily match reality, when there are more physical
parameters than degrees of freedom in the dynamics. But a
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consistent set of parameters is obtained, which is suitable for
reproducing the exact robot dynamics in stable simulations.

This paper is organized as follows. Section 2 states the equa-
tions of motion and the inverse dynamics model. In Section
3, the identification of the physical parameters is given as a
nonlinear optimization problem. Section 4 gives experimental
results and Section 5 concludes the paper. The identified base
parameters and physical parameters are given in the Appendix.

2. DYNAMIC MODEL OF THE ROBOT
2.1 Equations of Motion

Despite the compliance due to its torque sensors, the KUKA
LBR robot can be accurately modelled with rigid links. The
equations of motion, as in Siciliano et al. (2010), are given by

T=B(q)4+C(q,9)4+8(q) + g+ Fsign(q), (1)
where ¢,q,4 € R", with n the number of joints of the robot,
are the vectors of joint position, velocities and accelerations,
respectively. B(q) € R™*" is the inertia matrix, C(q,q§)q is the
vector of torques due to centrifugal and coriolis effects and g(q)
is the gravity vector. F, and Fy € R"*" are diagonal matrices of
the viscous and coulomb friction parameters. The terms in (1)
depend on the configuration and motion of the robot, and on its
physical parameters, which we stack for each link i in the vector

Hi = [mi7 lCl-xa lC,-ya lC,-m Iixxa Iixy7 Iixzy Iiyy7 Ii)‘z7 IiZZ7 EVv FH]T; (2)
where m; is the mass of link i, the vector [Ic,y, Ic,y, Ic;]" defines
the distance from the center of the i-th link frame to the center
of mass of link i. The parameters l;xx, lixy, lixz, Liyy, liy; and I,
form the symmetric inertia tensor of link i, defined relative to
the center of mass of link i in the i-th link frame, as

. Lixx li,\‘y Iixz
1; = ok Ly Ly | .
L

F;, and Fj; are the parameters for viscous and coulomb friction,
respectively. All physical parameters of the robot form the
stacked vector u := [/,Ll—r sy [,L,—lr ]T. Note that we neglect the
kinetic and potential energy from the joint actuators, as their
contributions are low in relation to the energy of the links, and
no measurements of the rotors’ angular velocity are vailable.

2.2 Inverse Dynamics Model (IDM)

For the identification of the dynamic model of rigid robots, the
so-called inverse dynamics model is used. The dynamics equa-
tions are expressed linearly w.r.t. a set of dynamic parameters,

. . T
which are stacked in the vector & = [an yeees n:nT } , where for

each link 7, i = 1,...,n, the parameter vector 7; is defined as
;= [M;, MX;, MY, MZ;, XX;, XY;, XZ;, YY;, YZ;, ZZ;, FV;, FS;] |

(3)
The relationship between the dynamic parameters in (3) and the
physical parameters in (2) are given by

M;:=m;, XX; = ixx+mi'(lg‘i)r+lg'iz)v
MX;:=mj-lcx, XYi:=lIly—m;-lcx-lcy,
MY,' = mi'lC,-ya XZi = Iixz_mi'lCix'lC,-za

“4
MZ; .= mi'lC,-z7 YY;:= iyy +m; - (la'x+la-z)7 )

FVi:=F,, YZ; =Ly, —m;-lcy - lc;z,
FS; == Fjy, ZZ; =iz +mi- (IE, +12,).
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The inverse dynamics model is derived from the Lagrangian
equations, as in Siciliano et al. (2010), and is given by

T YLy [m
) 0"yl ¥, ™
= . . 5)
T oror .-y}, T
~— N——— N
y Y(4,9,4) n

The matrix Y can be computed from measurements of ¢ and
estimates of ¢ and §.

2.3 Reduction to Base Parameters

Depending on the kinematic structure, the complete set of
dynamic parameters is not required to uniquely specify the
robot’s motion, see Gautier and Khalil (1988). Therefore, the
set of parameters to be identified can be reduced to a minimal
set of parameters, as shown in Gautier and Khalil (1990), which
are referred to as base parameters, 7. The relationship between
the complete vector of dynamic parameters, 7, and the vector
of base parameters, 7, is linear. Details about the regrouping
can be found in Khalil and Dombre (2004). The equations for
regrouping 7 to 7, for the KUKA LBR iiwa, with n =7, are
ZZR| :=77Z1+YY,,
MYRy :=MY>+MZ3+rl3- MR3,
XXRy := XX, — YYo + YY3+2-rl3-MZ3 +rl} - MR3,
ZZRy :=ZZy + YY3+2-rl3-MZ3+ rl3 - MR3 ,
MR3 := M3+ MRy, XXR3 :=XX3—YY3+YYy,
MYR3 :=MY3+MZy, ZZR3:=77Z3+YYy,
MRy := M4+ MRs ,
MYRy :=MY4—MZs —rls - MRs , (6)
XXRy :=XX4+YY5s—YY,y +2- rl5 -MZs —|—rl§ -MRs,
ZZRy = 7Z4+YY5+2-rls-MZs+rl% - MRs
MRs := M5+ MR, MYRg :=MY¢+MZ7,
MYRS ZZMY5—MZ67 XXR6 Z=XX6—YY6—|—YY77
XXRs :=XXs—YYs+YYs, MRg:= Mg+ M7,
ZZRs =775+ YYg, ZZRg :=ZZs+YY7,
XXR7 = XX7 — YY7 .
The inverse dynamics model from (5) with 7, thus becomes

T:Yb(qﬂ'LQ)ﬂba (7)
where the observation matrix Y from (5) is transformed into Y},
according to the linear regrouping transformation of (6).

3. METHODS FOR DYNAMIC IDENTIFICATION
3.1 Least-Squares Approach

The dynamic model identification is based on the measure-
ments of joint torques, Tyeqs, and joint positions, ¢meqs, Of
the robot during dynamic experiments. The joint velocities
and accelerations, ¢eqs and §Gpeqs, respectively, are com-
puted from the measurements. From this data, the matrix
Y (Gmeas Gmeas; Gmeas) 10 (7) can be constructed, see Siciliano
et al. (2010). During the experiment, M measurements along
the trajectory are recorded. The m-th measurement is denoted
bY gmeas(m). The resulting matrix equation is given by
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Yb(qmeaf(1)7q‘meas(l)7qrﬂeas(l)) v(l)
= T, +
Yb (qmeas (M) b q‘me{ld‘ (M) b qmeas (M))

Tmea:(l)
(8

Tmea; (M) V(M)

T"lf{lf Yh v
with T,,.4s the stacked vector of measured joint torque vectors.
The vector v contains the stacked measurement noise vectors
v(m), which are assumed to be additive zero mean Gaussian.
In order to reconstruct the robot’s motion, the reduced set of
base parameters, 7;, can be estimated by solving the following
least-squares optimization problem, see Bargsten et al. (2013),

=2 o _ 2
T, 15 *= argmin |[V]|; = argmin Hyhﬂb - meSHz' 9)
T Ty

In order to reduce high-frequency noise, the measured data is
filtered. Details about the data acquisition and measurement
treatment are given in Section 4. The base parameters, which
are obtained as the solution of (9), are sufficient to uniquely
describe the robot’s dynamics.

3.2 Consideration of Physical Feasiblity

To obtain consistent physical parameters, a slightly different
approach than solving (9) has to be taken. The identification
is now formulated as an optimization problem in the physical
parameters, [. The relation between the measured torques T
and U is described by the observation matrix Y as in (5) and by
the nonlinear relationship between 7 and u as defined in (4) and
denoted by 7 (). In order to guarantee a physically meaningful
result, constraints on the physical parameters u are introduced,
leading to the following nonlinear optimization problem

rrLian—Yﬂ(u)Hi (10a)
sty < U< Wy, (10b)
0<m,  0<eigl), (10c)
h(I) <0, Vie{l,..n}, (10d)

where the lower and upper bounds u;, and 1, are taken from
measurements, estimates, and CAD-files, see KUKA Robot
Group (2015a). The constraints (10c) guarantee physical feasi-
bility, i.e., positive masses and positive definite inertia tensors,
see Mata et al. (2005). The constraints (10d) on the entries of
the inertia matrix are introduced to obtain physical parame-
ters compatible with Gazebo. They are in part documented in
gazebosim.org (2014), and in part heuristically set to enable
numerically stable simulations. The constraints (10d) are

[IiZZa[iynyixx}T - [Iixx +Iiyy7 Iixx +Ii227 Iiyy +[izz]T < 0;

max(lixxaliyw]izz) —100- min(’ixmliyyvlizz) <0,

3[Ijz1a Ikyy]—r - [min(ljxxaljyy): min(lkxxvlkzz)]—r <0,

max(|1l-xy|, |Lixz|, |Iiyz|) —0.1|min (Iixxyliyyalizz” <0,

_[Iixxa Iiyya Iizz]T + 10_4[1a 17 l]T < 0;

—F,+0.1<0,

vie{l,..,7}, Vje{1,3,5}, Vke{2,4}.

They impose the triangular inequality of the diagonal elements
of the inertia matrix, see gazebosim.org (2014) and prevent
big differences between them. Moreover, the smallest diagonal
term of the inertia of links one to five is forced to correspond to
the axis parallel to the link length. The non-diagonal elements
of the inertia matrix should be small compared to the diagonal

ones. Finally, lower bounds on the diagonal inertia elements
and on the viscous friction coefficients are imposed.
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Table 1. MDH Param. KUKA LBR iiwa 14 R820

Link i Yi o; d,' 9,‘ rll- Link i Yi o; d,' 9,‘ rl,-
1 0 0 0gq O 5 0 m/2 0 g5 0.40m
2 0 7/2 0g O 6 0 w2 0gqs O
3 0 -m/2 0 g3 042m| 7 0 —m/2 0 g7 O
4 0 -m/20 g4 O

3.3 Optimal Excitation Trajectories

In order to reduce errors in the least-squares solution of (9)
due to measurement noise, the observation matrix needs to be
well-conditioned. This is the case, if the robot’s motion along
the trajectories sufficiently excites the effect of the dynamic
parameters, as the observation matrix Y, contains enough infor-
mation for the parameter identification. To this end, we design
optimal excitation trajectories to be tracked by the robot. The
optimality criterion to be minimized is the condition number
of Yy, referred to as cond(Y,), which is defined as the ratio
between its largest and smallest singular values, see Gautier
and Khalil (1991). The following parametrized Fourier series
are chosen as excitation trajectories, see Bargsten et al. (2013),

L
. aij - biy .
qi(t) .—l; o1 sin(oylt) — o/l cos(wylt)i=1,....n, (12)

for each joint i, where L is the number of sine- and cosine-

terms and fr = % is the fundamental frequency. Thus, the joint
velocities and accelerations can be analytically differentiated.
The parameters of the Fourier series, a;; and b;;, are optimized

with respect to the maximal information content of Y, which
is expressed by the optimization problem

min cond(Yy), Vi={l,..,n}, VI={1,...,L},

ai,big

(13)

subject to physical constraints of the robot’s kinematics and to
its actuation limits, see KUKA Robot Group (2015c¢). Different
approaches to the parametrized excitation trajectories are pos-
sible and were tested, such as sine series, splines, polynomials,
but the Fourier series give the best result, i.e., the lowest con-
dition number for Y,. The details of this optimization problem
and the resulting optimal excitation trajectories applied to the
KUKA LBR iiwa 14 R820 are given in Section 4.

4. EXPERIMENTS ON THE KUKA LBR ITWA
4.1 Description of the Robot’s Kinematics

The KUKA LBR iiwa is a serial robot with n = 7 rotational
joints, and no translational degrees of freedom. Its structure is
depicted in Figure 1. After each of the gearboxes, there are joint
torque sensors. Moreover, the robot is equipped with joint po-
sition encoders, see KUKA Robot Group (2015¢). Because of
the serial structure, the kinematics can efficiently be described
by the Modified Denavit-Hartenberg (MDH) convention, as in
Khalil and Dombre (2004). The rotational axis of joint i is
denoted by z;, and the common normal axis between z; and z;_
is denoted by x;. The parameter % = 0 indicates that joint i is a
revolute joint, ¢; denotes the angle between the axes z;— and z;
about x;_1. 0; is the angle between x;_; and x; about z;. Finally,
rl; indicates the distance between the axes x;_; and x; along z;.
The MDH parameters of the KUKA LBR iiwa 14 R820 robot
are given in Table 1. For the dynamic description of the robot,
twelve physical parameters per link i, y; € R'? as in (2), can
be defined. Alternatively, twelve dynamic parameters per link i,
7; € R'? as in (3), can be used. The reduction to a minimal set
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20,z1,y2,73,25,y6,77

r15

rl3

Fig. 1. Link frames of the KUKA LBR iiwa 14 R820

of parameters, as described in Section 2, leads to N, = 57 base
parameters T, as detailed in Table 2 in the Appendix.

4.2 Optimal Excitation Trajectories for the KUKA LBR iiwa

In the following, optimization problem (13) is solved in order to
find the optimal excitation trajectories for the dynamic identifi-
cation of the iiwa 14 R820. In the parametrized Fourier series
(12), the number of sine- and cosine terms issetto L =5 and
the fundamental frequency to fy = 5~ = 0.1 Hz. The duration
of the trajectory is 10 s and together Wlth a sample frequency of
100 Hz, this leads to 1000 samples to construct the observation
matrix Y. The resulting optimization problem becomes

min cond (Y}) (14a)
ai,big .
s. t. gt Z Zsm (oflt) — b}’l cos(wylr), (14b)
5.3 5 T
Y 5 Y bi Zl ay| =0, (14¢)
=1 =1 =1
5
Y /a8 < Ol (14d)
=1
5
Z \/m < qi,)nwa (14e)
=1
lai; bi z]T < min (152% qi’mamq'l-’mux) 11", @4

[all b; l] —max (l 5277; qt,minaQi,min) [1 1]—: (14g)
Vi=1,.7, Vi=1,.5,

where g; min, Gimax A0 Gimin, §imax are the lower and upper
bounds on the joint positions and velocities of the robot, re-
spectively. They can be found in KUKA Robot Group (2015¢).
The constraints (14c)-(14e) account for zero initial joint posi-
tions, velocities and accelerations of the trajectories. In order to
achieve a feasible trajectory, bounds on the parameters a;; and
b;; are set in (14f)-(14g). In Figure 2, the optimal trajectories
g} (1) for the joints i = 1, ...,7 are depicted, which give a condi-
tion number of cond(Y,) = 65. In Figure 3, the resulting path
of the end-effector during the optimal trajectory is shown.
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Fig. 2. Position trajectories of the seven joints during excitation.
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Fig. 3. Cartesian position of the end-effector during the excita-
tion trajectory, * denotes the start and end position.

4.3 Experimental Data Acquisition

The optimal excitation trajectories g; (), i = 1,...7, for the
seven joints are commanded in the Joint Position Control Mode
from the real-time client Fast Robot Interface to the robot, see
KUKA Robot Group (2015b). The joint positions and torques
from the robot are recorded with a sampling frequency of
fs = 1 kHz over K = 16 periods. The raw recorded data is
denoted by Gmeqs and Typeqs, for the joint positions and torques,
respectively. The m-th measurements are denoted by Geqs(m)
and Tyeq(m) and are averaged over the K recorded peri-
ods according to Tyeqs(m) 1= %Zle Tmeask (M) s Gmeas(m) ==
%Z,’le Gmeas k(M) , With Gmeqs k and Teqs ¢ being the recorded
data from period k. The measured and averaged joint positions
Gmeas(m), withm = 1, ..., M, are then filtered offline with a non-
causal zero-phase low-pass IIR Butterworth filter of order 20
and of a cutoff frequency of 2 Hz in both the forward and the
reverse direction. This filtering approach can be found in Gau-
tier et al. (2013). From the resulting data, the joint velocities
and accelerations are estimated using a central difference algo-
rithm to avoid lag. The measured and averaged joint torques
Tmeas(m) are filtered in the same way with a low-pass IIR
Butterworth filter of order 12 and of a cutoff frequency of 1.6
Hz. With this processed data, Tyeas = [Tmeas (1) -+, Tmeas (M)] T
and Y, (Gmeas, Gmeass Gmeas) are computed as in (8).

4.4 Estimation of Base Parameters

Using the averaged and filtered measurements of the joint
torques Tyeqs () and joint positions gyeqs(m) and the computed
estimates of the joint velocities and accelerations ¢eqs (1) and
Gmeas(m), the observation matrix Y, is computed and the least-
squares optimization problem (9) is solved. The results of the
identified base parameters are given in Table 2 in the Ap-
pendix, together with their relative standard deviations, which
are indicators of the quality of the individual parameter esti-
mates, see Khalil and Dombre (2004), computed by 0% 0 =
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100(oy, /|7;|) , with o7; := /Cr(j, j) being the standard devi-
ation of the estimation error of the parameter j, j=1,...,N,,
with N, the number of base parameters and

Cri=02(Y'7)", (15)

the variance-covariance matrix of the estimation error. In (15),
the variance of the parameter estimation, o2, is computed, as in

Khalil and Dombre (2004), by 62 := |7 —¥x|[5/(Mn—N,).
The standard deviations indicate very accurate results for all pa-
rameters except joint seven. One reason for this is that its mass
and absolute range of torques are much smaller compared to
the other joints, necessarily leading to bigger relative standard
deviations for the same absolute deviations. However, whereas
the accuracy of the parameters of lower joints in the kinematic
chain is important, as the motions of higher joints depend on
them, this is not the case for the seventh joint. It could in fact be
controlled without relying on its model parameters, by a simple
feedback controller. A further validation of the identified base
parameters is presented in Section 4.6.

4.5 Estimation of Consistent Physical Parameters

In order to obtain a consistent set of physical parameters, the
nonlinear optimization problem (10a)-(10d) is solved using the
SQP solver of fmincon in Matlab. The initial values are chosen
based on approximations of the robot’s links as cylinders of
homogeneous mass distribution. The results of the identified
consistent physical parameters of the KUKA LBR iiwa 14
R820 are given in Table 3 in the Appendix.

4.6 Validation and Cross-Validation of the Identified Parameters

In order to test the quality of the estimated parameters, four
reference trajectories g ;(t), j = 1,...,4, are defined and a
comparison is done between the joint torques 7T,,s Which are
measured in experiments on the robot tracking the reference
trajectories and the joint torques Ty;,, which are computed, sim-
ulated, using the dynamic model with the identified parameters
in Matlab. As a quantifier, the root mean square error between
the measured and simulated torques of joint i is computed

according to €gys; = \/ ﬁ Z%:l (Tmeas,i(m) — Tsimt,-(m))z. For
a direct validation, the excitation trajectory of the identification
is used as the first reference trajectory, g.r,1(t) = ¢*(t), with
q*(¢) solving (14a)-(14g). The resulting RMS values for the
identified base parameters and physical parameters are given
in Table 4 in the Appendix. Both are in the same range and
indicate a very high precision of the identified sets of param-
eters. The RMS values for the base parameters are slightly
smaller, as they represent the global optimum of (9), whereas
the physical parameters could represent a local optimum of
(10a)-(10d) because of the nonlinearity of the problem.

For the validation of the physical parameters, the joint torques
are also simulated in Gazebo. All three time series of the
joint torques, i.e. the measured ones, and the simulated ones
in Matlab and Gazebo, are shown in Figure 4. In Gazebo, in
order to ensure good reference tracking, an inverse dynamics
PD-controller is used, which neglects friction. This is a reason
for the higher deviations between the measured values and the
simulated values in Gazebo in comparison to the deviations be-
tween the measured torques and the simulated ones in Matlab.

To do a cross-validation of the identified physical parameters,
another three reference trajectories different from the excitation
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Fig. 4. Joint torques during parameter validation using refer-
ence trajectory gy.¢,1(t): Simulated and measured values.

trajectory are used. The second one, gr.r2(), is defined as a
sine series trajectory gref2,i(f) := Y-, aisin(bigr), i=1,...,7,
with L = 5 and where the parameters a;, b;; are optimized for
the excitation of the robot’s parameters, in the same way as in
(14a)-(14g). The third reference trajectory, g, 3(t), is defined
as a fifth order polynomial trajectory. It is defined through
k=1,...,K with K = 10 intervals of random durations T*. At
the end of the intervals, randomly defined waypoints Df‘ have to
be reached by joint i, i = 1,...,7. The part of the trajectory for
joint i between the two way points k — 1 and k is defined as

k )’ P! i\’ k k—1
Qref.ﬁ,i(t): 10’(ﬁ) 715‘(?) +6'(ﬁ) 'Di+Di )

The total duration of gy.r3(t) is Y&, T* = 10 s. The fourth
reference trajectory gr.r4(t) is defined similarly to g,.r3(t); it
is again a fifth order polynomial trajectory, but is defined by
K = 20 instead of 10 random intervals. The total duration is
again ZkK: 1 T* =10 5. The resulting RMS-errors between the
measured torques and the simulated ones using Matlab for the
cross-validation with all three reference trajectories qrefﬂg(t),
Gref3(t) and g1 4(t) are given in Table 4 in the Appendix.

5. CONCLUSION
The minimal set of base parameters as well as a consistent set

of physical parameters of the KUKA LBR iiwa 14 R820 robot
have been identified in experiments with optimal excitation tra-
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jectories. Both sets of parameters give a correct description of
the robot’s dynamics. A direct validation and cross-validation
of the identified parameters in simulations and experiments
show a very good match to the dynamic model of the robot. The
knowledge of a consistent set of physical parameters is very
useful for stable dynamic simulations.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Philippe Block, ETH
Ziirich, for providing the experimental facilities.

REFERENCES

Albu-Schiffer, A. and Hirzinger, G. (2001). Parameter Identifi-
cation and Passivity Based Joint Control for a 7 DOF Torque
Controlled Light Weight Robot. In Int. Conf. Robotics and
Automation (ICRA), 2852-2858.

Bargsten, V., Zometa, P., and Findeisen, R. (2013). Model-
ing, Parameter Identification and Model-Based Control of a
Lightweight Robotic Manipulator. In IEEE Int. Conf. Contr.
Applications (CCA), 134-139.

Besset, P, Olabi, A., and Gibaru, O. (2016). Advanced cali-
bration applied to a collaborative robot. In 2016 IEEE Int.
Power Electronics and Motion Contr. Conf. (PEMC), 662—
667. doi:10.1109/EPEPEMC.2016.7752073.

Gautier, M., Janot, A., and Vandanjon, P.O. (2013). A New
Closed-Loop Output Error Method for Parameter Identifica-
tion of Robot Dynamics. IEEE Trans. Contr. Sys. Techn.

Gautier, M. and Khalil, W. (1988). On the Identification of the
Inertial Parameters of Robots. In 27th Conf. Decis. Contr.

Gautier, M. and Khalil, W. (1990). Direct Calculation of
Minimum Set of Inertial Parameters of Serial Robots. IEEE
Trans. Robotics and Automation, 368-373.

Gautier, M. and Khalil, W. (1991). Exciting Trajectories for the
Identification of Base Inertial Parameters of Robots. In 30th
IEEE Conf. Decis. Contr., 494-499.

Gaz, C., Flacco, F, and de Luca, A. (2014). Identifying
the Dynamic Model Used by the KUKA LWR: A Reverse
Engineering Approach. In IEEE Inter. Conf. Robotics and
Automation (ICRA), 1386-1392.

gazebosim.org (2014). Find Out Inertial Parameters. http: //
gazebosim.org/tutorials.

gazebosim.org (2015). Gazebo. http://gazebosim.org.

Jubien, A., Gautier, M., and Janot, A. (2014a). Dynamic Iden-
tification of the KUKA Light Weight Robot: Comparison
Between Actual and Confidential KUKA’s Parameters. In
IEEE/ASME Int. Conf. Adv. Intell. Mechatronics.

Jubien, A., Gautier, M., and Janot, A. (2014b). Dynamic Identi-
fication of the KUKA LWR Robot using Motor Torques and
Joint Torque Sensor Datas. In 19th IFAC World Congress.

Khalil, W. and Dombre, E. (2004). Modeling, Identification and
Control of Robots. Kogan Page Science, London.

Koenig, N. and Howard, A. (2004). Design and Use Paradigms
for Gazebo, An Open-Source Multi-Robot Simulator. In Int.
Conf. Intell. Robots and Sys., 2149-2154.

KUKA Robot Group (2015a). KUKA Download Center CAD.
http://www.kuka-robotics.com.

KUKA Robot Group (2015b). KUKA Sunrise.Connectivity FRI
1.7. Augsburg, Germany, Ist edition.

KUKA Robot Group (2015¢). LBR iiwa 7 R800, LBR iiwa 14
R820 Specification. Augsburg, Germany, 5th edition.

Mata, V., Benimeli, F., Farhat, N., and Valera, A. (2005). Dy-
namic Parameter Identification in Industrial Robots consid-
ering physical Feasibility. Advanced Robotics, 19, 101-119.

Yvonne R. Stiirz et al. / IFAC PapersOnLine 50-1 (2017) 6863—6868

Ott, C. (2008). Modeling of Flexible Joint Robots, 13-27.
Springer, Berlin, Heidelberg.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010).
Robotics: Modelling, Planning and Control. Springer Verlag,
London.

APPENDIX

Table 2. Identified base parameters 7;, and relative
standard deviation ©.

Par. Value o [%|| Par. Value o [%]| Par. Value o [%]
ZZR, -0.146 1.02 | FV3 0.144 2.65 | FSs 0.085 281
Fv, 0.181 215 | FS3 0.083 3.02 | MXs -0.005 3.62
FS; 0336 0.69 | MXy -0.006 4.26 |MYRs 0.097 0.20
MX, -0.020 298 |MYR,; -2.272 0.02 | XXRs -0.007 12.43
MYR, 5805 0.0l | XXR4 0.751 030 | XY¢ -0.020 2.69
XXR, 2361 0.19 | XY4 -0.009 11.51| XZg 0.009 4.90
XY, 0033 415 | XZ4; -0.005 17.66 | YZs 0.021 2.07
XZ, -0.025 7.19 | YZ4 0.020 5.07 | ZZRs 0.009 6.17
YZ, 0022 729 |ZZRy 0.780 0.19 | FVg 0.137 1.87
ZZR, 2280 0.2 | FV4 0070 629 | FS¢ 0.102 2.09
Fv, 0356 1.19 | FS4; 0207 1.14 | MX; -0.004 5.78
FS, 0.161 158 | MXs 0.005 535 | MY; 0.001 24.84
MXz -0.025 2.87 | MYRs 0.081 041 | XXR; -0.015 3.33
MYR; 0.018 2.16 | XXRs 0.021 7.64 | XY7; -0.000 167.21
XXR; 0.048 635 | XYs 0.029 235 | XZ; -0.003 12.96
XY; -0.038 3.66 | XZs -0.025 233 | YZ; 0.007 547
XZ3 -0.054 290 | YZs 0.008 940 | ZZR; -0.020 3.16
YZy -0.022 721 | ZZRs -0.002 4225| FV; 0.008 31.49
ZZR3; 0.051 287 | FVs 0.040 6.77 | FS; 0.166 1.3l

Table 3. Identified physical parameters with con-
straints for physical feasibility and Gazebo.

Par. Link1 Link2 Link3 Link4 Link5 Link6 Link7

m;  3.94781
lee -0.00351
le,y 0.00160
;e -0.03139
L 0.00455
Ly, 0.00000
Ii: -0.00000
Iy, 0.00454
Iy, 0.00001
I;  0.00029
Fy 0.24150
Fi 031909

4.50275 2.45520 2.61155 3.41000
-0.00767 -0.00225 0.00020 0.00005
0.16669 -0.03492 -0.05268 -0.00237
-0.00355 -0.02652 0.03818 -0.21134
0.00032 0.00223 0.03844 0.00277
0.00000 -0.00005 0.00088 -0.00001
0.00000 0.00007 -0.00112 0.00001
0.00010 0.00219 0.01144 0.00284
-0.00000 0.00007 -0.00111 -0.00000
0.00042 0.00073 0.04988 0.00012
0.37328 0.11025 0.10000 0.10000
0.18130 0.07302 0.17671 0.03463

3.38795
0.00049
0.02019
-0.02750
0.00050
-0.00005
-0.00003
0.00281
-0.00004
0.00232
0.12484
0.13391

0.35432
-0.03466
-0.02324
0.07138
0.00795
0.00022
-0.00029
0.01089
-0.00029
0.00294
0.10000
0.08710

Table 4. RMS Errors between measured and simu-

lated torques for joints i in Matlab. g.r (¢): vali-

dation of 7, and . Grer2(1), Gres3(t) and gref 4(t):
cross-validation of the physical parameters (.

T u u H H

qref,l(t) qref.l([) Qref.Z(I) Qref,3(t> qref,4(t)
joint | RMS [Nm] RMS [Nm] RMS [Nm] RMS [Nm] RMS [Nm]
i= 0.29 0.35 0.34 0.55 0.43
i=2 0.36 0.39 0.44 0.48 0.74
i=3 0.13 0.14 0.23 0.23 0.15
i=4 0.15 0.17 0.17 0.25 0.27
i=5 0.08 0.09 0.12 0.15 0.06
i=6 0.18 0.21 0.22 0.22 0.15
i=7 0.06 0.10 0.12 0.12 0.06
Total 1.25 1.44 1.64 2.0 1.87




